

Performance Evaluation of Multipath TCP Linux Implementations

Euroview 2011

Amanpreet Singh

C. Görg, A. Timm-Giel, M. Scharf, T.-R. Banniza

2nd August 2011

SPONSORED BY THE

Outline

- Motivation
- ► TCP-based Multipath Protocol Implementations
 - MPTCP
 - MCTCP
- Experimental Setup
 - G-Lab Experimental Facitility TOMATO
- Performance Evaluation
- Conclusion & Outlook

- End-hosts are often equipped with multiple interfaces
 - allows for deploying multipath transport to increase throughput, improve resilience and balance congestion in the network [RFC 6182]

- ► This has led to the design and development of Multipath TCP solutions
 - a set of extensions for TCP that allows spreading of a single TCP flow across multiple subflows

Euroview 2011

3

Multipath TCP Variants

- Different solutions were published in the Multipath TCP working group in IETF as drafts
- MultiPath TCP (MPTCP)[draft-ietf-mptcp-multiaddressed-03]
 - MPTCP's Linux kernel implementation is open source [https://scm.info.ucl.ac.be/trac/mptcp/downloads]

- each multipath TCP subflow looks to the network as a normal TCP flow
- TCP option field is used for signalling information exchange
- PayLoad Multi-connection Transport (PLMT) [draft-singh-mptcp-plmt-00]
 - user space solution, avoids TCP stack modification
 - encodes signalling information in the payload
- Multiple Connection TCP (MCTCP) [draft-scharf-mptcp-mctcp-01]
 - A hybrid variant transparent in the single-path case
 - TCP option field is used only for connection setup

Performance Evaluation Setup

- Use Topology Management Tool (ToMaTo) a virtual networking testbed to design and use virtual networking topologies (consisting of devices and connectors)
 - End-hosts (KVM Devices) KVM virtualization technology with hardware emulated by <u>qemu</u>
 - Network connectivity is through Tinc VPN Configurable link delay and bandwidth
- ▶ Linux Vanilla Kernel 2.6.32 patched with MCTCP and 2.6.35 patched with MPTCP are used to boot KVM devices
- Test Strategy
 - Client and Server programs in C are used to shape application traffic (10Mbps, 20Mbps or higher)
 - Socket buffer size is set to 262.144B to avoid TCP flow control
 - Link bandwidth is set to 10Mbps and delay is varied between 1ms to 100ms
 - Numerical results are averaged over 5 runs

Euroview 2011

G-Lab Experimental Facility

Path per Subflow – Load Distribution

Event 3 (EV3): 50-60s Higher delay of 100ms on one (red) link

Event 2 (EV2): 30-40s Packet loss only on one (black) links

Event 1 (EV1): 10-20s Packet loss on both links

MCTCP is robust to link dynamics (packet loss/e2e Delay) and performs fair scheduling over its subflows

Euroview 2011

Path per Subflow - Background Traffic - 2Mbps Alcatel-Lucent

MCTCP can adapt to asymmetric path quality of its subflows and can aggregate the available bandwidth

Path per Subflow – Packet Loss on both Links

MCTCP may use coupled*# congestion control optionally

* draft-ietf-mptcp-congestion-03

see also MCTCP: A Multipath Transport Shim Layer

Euroview 2011

9

Conclusion

- Multipath TCP solutions adhere to the requirement goals of the multipath TCP architecture
 - increase throughput, more resilient
 - offer reliable, in-order transport being transparent to applications

MCTCP

- is optimized for bulk data transfer (multipath operation is initiated after a short delay – can introduce overhead)
- is robust to dynamic changes in the network such as variations in the packet loss rate, end-to-end delay and available bandwidth
- more MCTCP performance results and implementation details are published in "MCTCP: A Multipath Transport Shim Layer," M. Scharf and T.-R. Banniza, Globecom 2011

MPTCP

- is a kernel-based solution that uses TCP options field for signalling
- the current scheduling strategy doesn't seem to work well in all cases
- more elaborate results are presented in " MultiPath TCP: From Theory to Practice, "S. Barre", C. Paasch, and O. Bonaventure, IFIP Networking, 2011

Outlook

- Multipath TCP tests
 - with larger network topologies
 - in heterogeneous environment
 - for different application types
- Design Issues
 - How many MxTCP subflows?
 - Criteria to close an underperforming subflow
 - Scheduler to minimize reordering between subflows and resulting jitter
- Implementation Issues
 - APIs for multipath-aware applications
- Both MPTCP and MCTCP implementation work is in progress and hence evolving to provide a better solution for Future Internet demands

