Analysis of Resilience in Virtual Networks

İşil Burcu Barla¹², Dominic A. Schupke¹, Georg Carle²
¹ Nokia Siemens Networks, NSN Research, Munich, Germany
² Munich University of Technology, Munich, Germany

EuroView’11, Würzburg, Germany
August 1, 2011

Agenda

• Motivation
• Network virtualization model
• Failure types
• Comparison of resilience at different layers
 – Resource consumption
 – Service level resilience adaptability
 – Network setup and operation complexity
• Conclusion
• Q&A
Motivation

Resilience in Virtual Networks:

- Shared substrate resources
 - Enhanced efficiency
 - Increased effect of physical failures: many networks and services affected simultaneously

- Abstraction of the network
 - Increased flexibility and overall view possibility
 - More complex resilience design

- Different layers face different opportunities and challenges

Comparative analysis ➔ Optimal resilience design under different circumstances

Network virtualization model

VNO: Virtual Network Operator
VNet: Virtual Network

PIP: Physical Infrastructure Provider
Network virtualization model (cont’d)

Physical Infrastructure Provider (PIP):

- Owns the physical infrastructure
- Monitoring of the physical and virtual resources
 - Physical Resources (PR): Total access and control
 - Virtual Resources (VR): Knowledge of the usage and physical location
- Network utilization optimization: optimal VR allocation for all virtual networks (V Nets)
- Migration of VRs from one PR to another one
 - Overall optimization for all the V Nets residing on the physical network
 - Shutting down a part of the network (e.g. energy efficiency, maintenance purposes)

Network virtualization model (cont’d)

Virtual Network Operator (VNO):

- Owns and operates one or several V Nets
- VNet: virtual links and nodes
 - Requirements: node - CPU, memory, location, technology, …
 - link - bandwidth, delay, disjointness, …
 - Mapping to the network of one or more PIPs
- VNet request:
 - Advertisement of available virtual resources: PIPs → VNO
 → Overall view of the available resources!
 - Negotiation with various PIPs for establishing an optimal VNet
- Monitoring:
 - Buffer overflow, packet delay, …
Failure types

1) **Physical link/node failure:**
 - Transport link failure
 - Router/switch/server failure
 PIP → First one to detect the failure!

Resilience options:
1) Only PIP is responsible for resilience or VNO has no backup resource
2) Only VNO reacts due to the contract
3) Both can react
 - PIP: first one to detect the failure
 - Detected failure and recovery action taken signaled to VNO (also for Case 2)
 - Failure escalation with triggering
 - Hold-off timer

Failure types (cont’d)

2) **Virtual Machine (VM) failure:**
 2.1) Internal failure
 - VNO → The owner and controller of the VMs
 - PIP cannot (and shouldn’t) react

 2.2) Complete failure
 - No difference for VNO compared to physical failure

 2.3) Hypervisor failure
 - VNO cannot do anything

3) **Control plane failure:**
 - Topology Computation Engine
 - Network Management System
 } Data plane is still working
 Need to be extremely fast not seen
Comparison of resilience at different layers

• Failure types and cases to be considered:
 – Where both VNO and PIP are able to react
 – Where fast reaction is required
→ Physical node/link failures and complete VM failures

• Comparison metrics of having resilience at different layers:
 – Resource consumption
 – Service level resilience adaptability
 – Network setup and operation complexity

Comparison of resilience at different layers: Resource Consumption

PIP:

• Complete view of its network with…
 – its physical resources
 ▪ Available virtual resources on a physical resource
 ▪ Already leased resources and their properties
 – virtual resources residing on its network
 ▪ Their location
 ▪ Their properties

→ Optimizing the resource utilization regarding all VNets in the network
 – Migration of resources if necessary
 – Backup resource pools and shared protection
Comparison of resilience at different layers: Resource Consumption (cont’d)

VNO:
- Only limited view on the resources of a PIP
- No knowledge about the whole network structure of the PIP

However...
- Overall view over the available resources of all the PIPs
 ➔ Optimal combination of available resources from several PIPs for both primary and backup resources
 ➔ Sharing of the backup resources at the VNO level

Comparison of resilience at different layers: Service level resilience adaptability

PIP:
Limited: Should not influence service handling
 ➔ No optimization of resilience mechanisms possible depending on the actual services

VNO:
Comprehensive knowledge about the services and traffic characteristics in its VNets
 ➔ Optimization of the choice of backup resources and recovery actions accordingly
 ➔ Adaptation of the resilience level depending on the running services
Comparison of resilience at different layers: Network setup and operation complexity

PIP:
- Close to the origin for the considered failures
 ➔ More knowledge about the failure
 ➔ Fast reaction ability
- Multiple VNets share the same physical resource
 ➔ If the problem is fixed at the PIP layer, it is solved for all the affected VNets

VNO:
- No direct knowledge about the physical failures
 ➔ Need for signaling and coordination
- Due to one physical failure many VNets might be affected
 ➔ Need for separate reaction by each VNO
- Virtual resources for services should obey physical disjointness
 ➔ Need for disjointness information request
Conclusion

• Resource consumption
 – PIP: Complete knowledge of its network
 Optimization over all residing VNets
 – VNO: Overall view of the available resources of all PIPs

• Service level resilience adaptability
 – VNO: Optimization regarding the services

• Network setup and operation complexity
 – PIP: Simplicity regarding signaling and scalability

• Future work
 – Quantitative analysis of the results: Delay, resource consumption, cost, complexity
 – Design of appropriate resilience mechanisms

Q&A

Thank you for your attention!

Contact: isil.barla.ext@nsn.com