
Application and Network Services Composition
with the Help of Mediation

Abbas Siddiqui∗, Michael Kleis†, Julius Mueller‡, Paul Müller∗, Thomas Magedanz‡
∗ University of Kaiserslautern, Postbox 3049 67653 Kaiserslautern, Germany

Email: {siddiqui,pmueller}@informatik.uni-kl.de
†Fraunhofer FOKUS, Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany

Email: {michael.kleis}@fokus.fraunhofer.de.de
‡Technical University Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany

Email: {julius.mueller, thomas.magedanz}@tu-berlin.de

I. INTRODUCTION

In todays Internet the network stack is divided into distinct

layers which can be implemented by different protocols. Each

layer offers a service to directly adjacent layers. Although

this crisp and robust design has proved its advantages (e.g.

functionality scoping, stability) there are also disadvantages

of this architecture. Protocols on different layers implement

the same functionality (e.g. IP and TCP Checksum), the

physical layer is not aware of the application and cannot adapt

error correction or coding (e.g. for multimedia over wireless).

Besides this, there are also issues like cyberspace tussles [8],

the increasing mobility of the end-hosts and the ossification

of the Internet due to the increasing complexity of the pro-

tocol interdependencies that lead to some new architecture

proposals for a Future Internet. One proposal is Functional

Composition (FC) which decomposes the functionalities of the

network stack in different functional blocks. These functional

blocks are loosely coupled and provide means to exchange

information between functionalities of different levels. Many

projects (e.g. ANA [3], RBA [2], 4WARD [1], Net-Silo [5],

RNA [6], Network Service Architecture [4], and SONATE [9])

have addressed this approach from different perspective to find

a best solution for a flexible future Internet architecture which

can cope with the requirements of futuristic trends.

The G-Lab DEEP [11] cross-layer FC architecture leads to

a two-layer functional composition architecture. Services (e.g.

web services, encoding service) are composed at service layer

and network services at network layer. Scope of services at

network and service layer is not limited as any kind of service

could be implemented at any of both layers but it is important

to take in to consideration where specific service would be

most optimized and efficient. This separation is still valuable

because an application designer should not know and compose

the network functional blocks by himself but explicitly state

the abstract requirements of an application, e.g. encryption

and QoS (maximum delay, maximum loss). Nevertheless, there

should be a feedback of the network if requirements can be met

or not, thus service level can react by realizing e.g. encryption

on service level, using another media encoding, or by selecting

a different content source. For this purpose we propose in

this paper a cross layer mediator that negotiates and exchange

information between the two layers. We will explain the main

concept of the mediator in the following sections.

II. CROSS-LAYER MEDIATION

In the G-Lab DEEP project [11], we consider FC on

Application and Network Level. The reason for this is based

on the fact that e.g. functional blocks for real-time media

processing may not be instantiated as network components

because of their comparable high computing demands.

Fig. 1. Mediator and Interfaces

To be able to instantiate such functional blocks on appli-

cation level a Broker component is used. In case a client

demands a service, which cannot be resolved by a single

service instance, the Broker is capable to combine several

service blocks into a workflow. Additionally the broker derives

the different service block requirements and signals them to

the mediator.

The Mediator component ,we propose, is comparable to an

intelligent middle ware allowing the application to abstract

from the used FC framework or more general transport net-

work. In fig. 1, the conceptional placement of components is

shown such as mediator, functional composition frameworks

and relative position of APIs. The actual mediation is not about



selection of a FC framework but services presented at service

level and network level which may be provided by different

FC frameworks. Nevertheless in G-Lab DEEP context, we are

focus on the SONATE FC framework [9]. For the mediation

process Policies are used to resolve the conflicts and to derive

a mediation decision. The used policies are considered to be

domain (e.g. telephony, multimedia, file transfer) specific. The

interfaces provided by the Mediator are:

1) Legacy Interface (LI): The LI interface is based on BSD

Sockets and can be used by legacy applications to access

a FC based network. The Mediator performs all required

tasks to establish network connectivity for the legacy

application.

2) Management Interface (MI): The MI Interface is used

for mediator to mediator communication or can be

utilized by network operators to inject policies to be

used for the actual mediation process.

3) Functional Composition Interface (FI): The FI interface

is based on the abstraction library developed by the

Special Interest Group on FC [10]. Based on calls to the

FI library Network connectivity and network FC based

on specified requirements can be triggered for all FC

frameworks developed inside G-Lab Projects. The FI

API offers an URI based communication paradigm com-

parable to current content based addressing schemes.

4) EPC conform Rx Interface: This interface can be used

to interact with the 3GPP EPC framework.

A. How Mediation Works

To perform a mediation, it requires input from different

resources as shown in fig. 2 e.g. application requirements,

services from network and service layer, policies.

Fig. 2. Required input for mediation

An application will send requirements to the broker, it

is a task of the broker to look for existing services at the

service layer with respect to the application requirements and

inform the mediator about existing services and the application

requirements. As soon as the mediator received a request from

the broker, it will look for possible services from the network

layer and if possible then check network constraints (e.g.

bandwidth, wireless or wired network, etc). Policies play one

of the major roles in the mediation process. Policies are simple

rules which are related to a particular domain (e.g. telephony,

file transfer). The mediator component uses given policies

to infer the cross-layer composition. Possible workflows are

also part of policies but those workflows are not filled up

with any particular implementation (i.e building blocks) of a

service . After selecting a suitable workflow with respect to

QoS parameters, mediator will delegate the task of execution

of services to service and network layer. An FI API call is

triggered to set-up a connection. The resulting connection

instance will be given back from the network architecture,

in case of a successful execution of a workflow, which will

be further forwarded to the application via broker so that a

connection will be established.

III. CONCLUSION

In this paper a mediation process has been proposed which

provides more flexibility in a cross-layer FC architecture.

Instead of only following a top down approach where the

application tells the network its requirements, the network and

application can interact to find a suitable solution. In a FC

approach, certain application level services are likely to move

down to the network level. Mediation helps to determine where

functionalties should be executed in an optimal manner. In the

poster presentation related to this abstract we provide a more

technical description of the described use case.

IV. ACKNOWLEDGMENT

This work is funded by the German Federal Ministry of

Education and Research within the scope of the G-LAB DEEP

project [11] as part of the G-Lab project.

REFERENCES

[1] 4WARD EU Project. http://www.4ward-project.eu/
[2] Robert Braden, Ted Faber, and Mark Handley. From protocol stack to

protocol heap: Role-based architecture (2003).
[3] Autonomic Network Architecture (ANA). http://www.ana-project.org
[4] Sivakumar Ganapathy and Tilman Wolf. Design of a network service

architecture, in Proc. of Sixteenth IEEE International Conference on
Computer Communications and Networks (ICCCN), Honolulu, HI, (Aug.
2007).

[5] R. Dutta, G.N. Rouskas, I. Baldine, A. Bragg, and D. Stevenson. The
Silo architecture for services integration, control, and optimization for
the future internet Communications, 2007. ICC ’07. IEEE International
Conference, (June 2007).

[6] Venkata Pingali, Joseph D. Touch, Yu-Shun Wang. A recursive network
architecture (2006).

[7] Howard Foster, Arun Mukhija, David S. Rosenblum and Sebatian Uchitel.
A Model-Driven Approach to Dynamic and Adaptive Service Brokering
using Modes.

[8] David D. Clark, Karen R. Sollins, John Wroclawski, Robert Braden.
Tussle in Cyberspace: Defining Tomorrowds Internet, In Proc. ACM
SIGCOMM (2002)

[9] Paul Mueller, Bernd Reuther. Future Internet Architecture - A Service
Oriented Approach, it - Information Technology, Jahrgang 50 (2008)

[10] G-Lab Special Interest Group Functional Composition. GAP: A G-Lab
Application-to-Network Interface, Euroview2011, Würzbug, Germany

[11] BMBF Funded Project, G-Lab DEEP, http://www.g-lab-deep.de/
[12] 3GPP TS 36.300, Evolved Universal Terrestrial Radio Access (E-UTRA)

and Evolved Universal Terrestrial Radio Access Network (E-UTRAN).
[13] 3GPP TS 23.203, V10.0.0 (2010-06), Policy and charging control

architecture (Release 10).


